
TABLE OF CONTENT

PIC Controlled Oscilloscope 1

Operation of the Assembly Code 2

USART 6

Analogue to Digital Converter 7

Liquid Crystal Display (LCD) 9

Troubleshooting 11

Assembly Code 12

References 22

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 1 Beno Gorancic

PIC Controlled Oscilloscope

The aim of this assignment is to design and build a simple oscilloscope using the

Microchip PIC 16F877 Micro controller, the 2 potentiometers on the analogue module

that connects to the DSX Kit, the DSX 9 pin serial port and LCD (Liquid Crystal

Display).

The potentiometers on the analogue module will provide the frequency (X-axis) and

amplitude (Y-axis) controllers.

The positive (left) potentiometer is used to move the Y-axis, while the negative

(right) potentiometer is used to move the X-axis.

Below are 2 diagrams that show what the output looks like.

Figure 1.0: LCD

Figure 1.1: Graph on Hyper Terminal

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 2 Beno Gorancic

Operation of the Assembly Code

The following pseudo code demonstrates the operation of the assembly code.

BEGIN

Setup ports

Clear interrupt flags registers

Turn off interrupts

Initialize LCD

 Set to ram bank 0

 Set PORTE to receive commands

 Power up

 Set LCD to 8 bits

 Set 8 bit interface 2 line, 5x7 character format

 Clear all DDRAM and set cursor to address 01

 Display ON

Set PORTE to receive data

 Write student number

 Write “F=” and “A=”

Initialize Hyper Terminal

 Set to ram bank 0

 Send the following text; char by char

 A3 2006

 H(s)

 ^

 Temp = 16

 Send “|” then carriage return

 Temp = Temp – 1

 Go to Send while Temp not = 0

 Temp = 65

 Send “-” then carriage return

 Temp = Temp - 1

 Go to Send while Temp not = 0

 Send >

 Send space

 Send f

 LOOP:

 Convert analogue signal to digital

 Set to channel 2

 Acquire time; at least 20µs

 Start conversion (set GO/DONE)

 Poll GO/DONE to be cleared

 Write result to register (only high byte ADDRESH)

 Set to channel 3

 Repeat process for Amplitude

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 3 Beno Gorancic

Scale Data (From 8bit to 6bit (Freq.) & to 4bit (Amp.))

 Temp = 2

 Shift

 Right shift scaled Frequency

 Clear bit 7

 Temp = Temp - 1

 If Temp not = 0 then go to Shift

 Store scaled frequency in user define register

 Temp = 4

 Repeat process for Amplitude to be scaled

 If Frequency changed then

 Update LCD

 If Amplitude changed then

 Update LCD

 If scaled Frequency changed then

 Update Hyper Terminal

 If scaled Amplitude changed then

 Update Hyper Terminal

 Set old scaled frequency to scaled frequency

 Set old scaled amplitude to scaled amplitude

 GOTO: LOOP

END

The following pseudo code demonstrates the operation of the LCD Update

 BEGIN

 Set PORTE to receive commands

 Move cursor to 3rd position 2nd line of the LCD

 Convert frequency (binary number) to BCD

 Set PORTE to receive data

 Send hundreds

 Send tens

 Send units

 Set PORTE to receive commands

 Move cursor to 9th position 2nd line of the LCD

 Convert amplitude (binary number) to BCD

 Set PORTE to receive data

 Send hundreds

 Send tens

 Send units

 END

NOTE: hundreds, tens and units are saved in a user define register during the

conversion process

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 4 Beno Gorancic

The flow chart demonstrates the Binary to BCD conversion

Figure 2.0: Binary to BCD (provided in Lecture PIC3)

The following pseudo code demonstrates data being sent to the LCD in 8 bit mode

 BEGIN

 Clear enable pin of PORTE

 Delay 1ms

 Write data to PORTD (LCD data pins)

 Enable pulse pin on PORTE

 Clear enable pin of PORTE

 END

This particular pseudo code demonstrates data being sent to Hyper Terminal

 BEGIN

 Move value from W register to transmit register (TXREG)

 Check

 Check if GO/DONE set

 If not, go to Check

 END

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 5 Beno Gorancic

Last but not least the pseudo code for updating Hyper Terminal

 BEGIN

 Move cursor to top-left corner of Hyper Terminal

 Move cursor down 18 times

 Temp = old scaled frequency + 1

 Move forward

 Move cursor forward

 Temp = Temp - 1

 If Temp not = 0 then

 Go to Move forward

 Temp = old scaled amplitude + 1

 Erase char

 Erase value

 Move cursor back once (backspace)

 Move cursor up

 Temp = Temp – 1

 If Temp not = 0 then

 Go to erase char

 Move cursor to top-left corner

 Move cursor down 18 times

 Temp = scaled frequency + 1

 Move forward

 Move cursor forward

 Temp = Temp – 1

 If Temp not = 0 then

 Go to Move forward

 Temp = scaled amplitude + 1

 Add star

 Add star to represent the amplitude value

 Move cursor back once (backspace)

 Move cursor up

 Temp = Temp – 1

 If Temp not = 0 then

 Go to add star

 END

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 6 Beno Gorancic

USART

The Universal Synchronous Asynchronous Receiver Transmitter also known as a

Serial Communications Interface (SCI).

The following settings are outlined in the specification sheet and are to be used

 57600bps

 8bit

 No parity

 No flow control

 1 stop bit

The USART is configured with the following settings:

PORTC is cleared to initialize it and TRISC<TX> is set to enable USART asynchronous

transmission.

Bit BRGH (TXSTA<2>) is set to enable transmission.

The SPBRG register controls the period of free running 8-bit timer. The register is set

to decimal 20. The value is taken from Table 10-4 on page 100 of the PIC16F87X

Data sheet, using BRGH = 1, Fosc = 20 MHz and 57.6K Baud rate.

Bit SYNCH (TXSTA<4>) is cleared to enable asynchronous mode.

Bit TXEN (TXSTA<5>) is set to enable transmission.

Bit SPEN (RCSTA <7>) is set to enable the serial port.

To transmit data over the serial port, TXREG is loaded with the data. However there

needs to be a delay of at least 20µs between each sent character to transfer the data

correctly.

This is calculated using the following formula:

Baud rate: 57.6K

1 / 57.6K = 17.36µs

However in my design, I poll TXIF (PIR1<4>) to see if it has been set.

Once it has been set the next character can be sent.

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 7 Beno Gorancic

Analog to Digital Converter

The built-in module in the PIC16F877 Micro controller converts the analogue data

received from the 2 potentiometers to digital.

The potentiometers are connected to pins AN2 (Vref-) and AN3 (Vref+) as specified in

the Analogue Peripheral Module Schematics.

The voltage references Vref+ and Vref- for the A/D converter need to be set to Vdd and

Vss.

Pins AN2 and AN3 are analogue. Pins RE2 - RE0 need to be digital to interface with

the LCD.

By looking at the PCFG3:PCFG0 (ADCON1 <3:0>) A/D Port Configuration bits on page

112 of the PIC16F87X Data sheet, it can be seen that there is only one option

available. That is, bits PCFG3:PCFG0 are set to 0010.

So PORTE is set to digital and PORTA is set to analogue.

Furthermore, the A/D module produces a 10 bit output, bit ADFM (ADCON1<7>) is

cleared to left-justify to measure the 8 most significant bits from the A/D module

high register – ADRESH.

For the A/D converter to meet its specified accuracy, the charge holding capacitor

must be allowed to fully charge to the input channel voltage. The Acquisition time is

calculated using the following formula.

Figure 3.0: Acquisition time

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 8 Beno Gorancic

It can be seen that at least 20µs need to pass before trying to do the conversion. In

my design I use 1ms to re-use the delay sub routine that is used throughout the

program. Also the human eye can‟t tell the difference between 20µs and 1ms nor is

this time of great importance so the cause is justified.

Under the section Operation of the Assembly Code, the process to convert analogue

signal to digital is presented as pseudo code.

In this particular design the bit GO/DONE (ADCON0<2>) is polled to check if conversion

is complete. When it clears, the conversion is complete and the value in ADRESH is

stored in a user defined register.

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 9 Beno Gorancic

Liquid Crystal Display (LCD)

The LCD displays the student number, frequency and amplitude, as shown in Figure

1.0. The frequency and amplitude range is from 0 to 255. The analogue peripheral

module equivalent values are 0V to 5V.

The figure shows the address of each block on the LCD.

Figure 1.1: Display Data Ram Access Map

The following table shows how the LCD is connected to the PIC.

Table 1.0: LCD Connections

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 10 Beno Gorancic

The LCD is set as an 8 bit interface 2 lines, 5x7 character format.

Display shifting is disabled and cursor shifting is used instead.

Display is set to ON.

Once the frequency or amplitude is converted to BCD it‟s ready to be transferred to

the LCD.

To transfer the number 255; 2 needs to be sent first, then 5 followed by 5.

However before transferring the value it needs to be changed into the correct ASCII

char to represent the actual value. This is done by adding H „30‟ to the value.

So if we have a value of 2 we add H „30‟ to get H „32‟ which represents decimal 2.

It‟s also worth mentioning the following:

LCD E – Enable Line is used to initiate the actual transfer of commands or character

data between the module and data lines.

LCD R/W – Read/Write Line is pulled low in order to write commands or data to the

module.

LCD RS – Register Select Line. When cleared (low), data bytes transferred to the

display are treated as commands. By setting (high) RS, character data is transferred

to the LCD.

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 11 Beno Gorancic

Troubleshooting

During the program development minor problems were encountered but did not

require the use of a software based debugger.

One such problem was after I got my LCD working I wrote the code for Hyper

Terminal and tested it separately which worked fine. But after putting the two

together the LCD would not update the frequency and amplitude smoothly, it was

very slow compared to how it functions on its own.

My first assumption was that I must be doing something wrong when checking if the

frequency or amplitude changed. After close inspection I saw that it was fine. It

then hit me that it‟s the delay sub routine used after each character is sent to Hyper

Terminal, I was using a 1ms delay. A lot of chars are sent to the hyper terminal so

the ms‟s add up so by the time I get to update the LCD time passes.

The issue was solved by not using a delay but by checking the bit TXIF (PIR1<4>).

It‟s polled until its set; once set another character can be sent.

Another problem was a silly typing mistake, which I found later out. This also

happened when I combined the Hyper Terminal together with the LCD code. The

frequency was showing up fine but the amplitude would only show garbage on the

LCD. Common sense said that I must be corrupting my user defined register that

holds the value for amplitude. So I started disabling non critical sub routines and

found out that the sub routine that scales the data was causing the problem.

After spending half an hour trying to figure out what the problem was and in the

process resisting not to throw the assignment in garbage I spotted the mistake. I

have a loop which is called Scale_Amplitude and a user defined register

Scaled_Amplitude. The silly spelling mistake was during the step when I clear bit 7.

I was clearing Scale_Amplitude instead of Scaled_Amplitude.

A 3rd mistake I made was during the update to hyper terminal. Everything worked

fine except it wouldn‟t erase. The fact was I was setting my old scaled amplitude to

the current scaled amplitude without realising it, so each time I wanted to erase data

it would erase exactly the number of time the new amplitude is and write the new

values, making it look like it wasn‟t erasing. This mistake was easily fixed by

removing the code that was setting the old scaled frequency to current scaled

frequency, which was used earlier only for testing purposes.

I have been programming for many years now and even though assembly code is

new to me, I have learned to debug a lot of coding problems without the need of a

software based debugger. This assignment is a clear example of that. The

specification sheet does not specifically ask to show evidence of debugging using the

MPLAB debugger so I believe my way of debugging is just as good.

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 12 Beno Gorancic

Assembly Code

;---
; author : Beno Gorancic
; last modified : 05/06/2006
;
; most of the code used in this program has been adopted from code made available
; to students on UTS Online under the subject 48441 - Introductory Digital Systems
;---

 LIST P=16F877, F=INHX8M
 #include <P16F877.inc>

;---
; CONFIGURATION WORD
;---
 ; code protect off, debug off, program memory write protection off,
 ; data EE memory code protection off, low voltage programming off,
 ; brown out detection on, watch dog timer off,
 ; high speed(>4MHz) xtal program write on
 __config _CP_OFF & _DEBUG_OFF & _WRT_ENABLE_OFF & _CPD_OFF & _LVP_OFF & _BODEN_ON &
_WDT_OFF & _HS_OSC & _PWRTE_ON

;---
; MEMORY EQUATES
;---
Bank0Ram equ H'20'

;---
; MEMORY ALLOCATIONS
;---
 cblock Bank0Ram ; beginning of access RAM
 Temp
 LCD_Temp_Buffer
 Axis_Temp_Value
 DelayA
 DelayB
 DelayC
 huns
 tens
 units
 Frequency
 Amplitude
 Old_Frequency
 Old_Amplitude
 Scaled_Frequency
 Scaled_Amplitude
 Old_Scaled_Frequency
 Old_Scaled_Amplitude
 endc

;---
; VECTORS
;---
 org 0x0000 ; reset vector
 goto MainLine

 org 0x0004 ; interrupt vector
 goto IntService

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 13 Beno Gorancic

;---
; IntService - INTERRUPT SERVICE ROUTINE
;---
IntService ; empty routine, just in case an interrupt occurs
 retfie ; return from interrupt

;---
; MainLine - MAIN PROGRAM
;---
MainLine
 call Initialize
 call Startup_LCD
 call Startup_HyperTerminal

;---
; MainLoop - MAIN PROGRAM LOOP
;---
MainLoop
 call Analog_to_Digital
 call Scale_Data

 movfw Frequency ; set value in W register to Frequency
 subwf Old_Frequency,W ; subtract Frequency from Old_Frequency; store in W
 btfss STATUS,Z ; if W = 0, STATUS = 1...
 call Send_to_LCD ; then skip this operation

 movfw Amplitude
 subwf Old_Amplitude,W
 btfss STATUS,Z
 call Send_to_LCD

 movfw Scaled_Frequency
 subwf Old_Scaled_Frequency,W
 btfss STATUS,Z
 call Send_to_HyperTerminal

 movfw Scaled_Amplitude
 subwf Old_Scaled_Amplitude,W
 btfss STATUS,Z
 call Send_to_HyperTerminal

 movfw Scaled_Frequency
 movwf Old_Scaled_Frequency
 movfw Scaled_Amplitude
 movwf Old_Scaled_Amplitude

 goto MainLoop

;---
; Initialize - INITIALIZATION ROUTINE
;---
Initialize
 bcf STATUS,RP0
 bcf STATUS,RP1 ; bank 0 selected
 clrf PIR1
 clrf PIR2 ; clear interrupt flags registers
 clrf PORTA
 clrf PORTB
 clrf PORTC
 clrf PORTD
 clrf PORTE ; clear ports to output all 0's
 clrf INTCON ; ensure all interrupts are turned off
 bsf RCSTA,SPEN ; serial port enabled
 bsf STATUS,RP0 ; set ram bank 1
 clrf TRISA
 clrf TRISB
 clrf TRISC

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 14 Beno Gorancic

 clrf TRISD
 clrf TRISE ; pins on ports A to E are outputs
 clrf PIE1 ; disable interrupts
 movlw H'3F'
 movwf TRISA ; port A pins all inputs
 bsf TRISC,6 ; enable USART asynchronous transmit

movlw H'02'
 movwf ADCON1 ; left justified, port E digital, port A analogue, Vref+ = Vdd, Vref- = Vss
 movlw H'14'
 movwf SPBRG ; Fosc = 20Mhz, BRGH = 1, baud rate = 57.6K, we get: SPRGH value of D'20'
 bsf TXSTA,TXEN ; transmission enabled
 bcf TXSTA,SYNC ; asynchronous mode
 bsf TXSTA,BRGH ; high speed baud rate
 bcf STATUS,RP0 ; set ram bank 0

 return

;---
; Analog_to_Digital - ANALOG TO DIGITAL CONVERTER
;---
Analog_to_Digital
 movlw H'91'
 movwf ADCON0 ; Fosc/32, channel 2, GO/DONE 0, A/D converter on
 movlw .1
 call Delay ; delays 1ms before conversion
 bsf ADCON0,GO_DONE ; ADC routine

Wait_Frequency
 btfsc ADCON0,GO_DONE ; check if conversion is over
 goto Wait_Frequency ; if not goto Wait_Frequency
 movfw ADRESH ; move high byte to W
 movwf Frequency ; move high byte to Frequency
 movlw H'99'
 movwf ADCON0 ; Fosc/32, channel 3, GO/DONE 0, A/D converter on
 movlw .1
 call Delay ; delays 1ms before conversion
 bsf ADCON0,GO_DONE ; ADC routine

Wait_Amplitude
 btfsc ADCON0,GO_DONE ; check if conversion is over
 goto Wait_Amplitude ; if not goto Wait_Amplitude
 movfw ADRESH ; move high byte to W
 movwf Amplitude ; move high byte to Amplitude

 return

;---
; Binary_to_BCD - CONVERTS A BINARY NUMBER TO A BINARY-CODED-DECIMAL
;---
Binary_to_BCD
 clrf huns ; clear hundreds
 clrf tens ; clear tens
 clrf units ; clear units

; do subtract hundred and counting while no borrow is generated
Loop_h
 incf huns,F ; record one hun subtracted
 addlw -D'100' ; subtract decimal hundred
 btfsc STATUS,C ; if a borrow (C==0) then exit Loop_h
 goto Loop_h
 decf huns,F ; correct for one subtract
 addlw D'100' ; add 100 to residue

; do subtact ten and counting while no borrow is generated
Loop_t
 incf tens, F ; record one ten subtracted
 addlw -D'10' ; subtract decimal ten
 btfsc STATUS, C ; if a borrow (C==0) then exit Loop_t

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 15 Beno Gorancic

 goto Loop_t
 decf tens, F ; correct for one subtract
 addlw D'10' ; add 10 to residue
 movwf units ; save the remainder in units

 movlw H'30' ; hex ascii code for number 0
 addwf huns,F ; add H'30' to get correct ascii value
 addwf tens,F ; add H'30' to get correct ascii value
 addwf units,F ; add H'30' to get correct ascii value

 return

;---
; Startup_LCD - LCD STARTUP ROUTINE
;---
Startup_LCD
 bcf STATUS,RP0
 bcf STATUS,RP1 ; set ram bank 0

 ; the following sequence is the recommended power up sequence for an LCD as stated by the chipset
manufacturer
 bcf PORTE,0 ; instruction register select
 movlw .25
 call Delay ; delay for LCD PowerUp
 movlw .30
 call LCDWrite8 ; set LCD to 8 bits
 movlw .5
 call Delay ; delay for LCD
 movlw .30
 call LCDWrite8 ; set LCD to 8 bits
 movlw .5
 call Delay ; delay for LCD
 movlw .30
 call LCDWrite8 ; set LCD to 8 bits
 movlw .5
 call Delay ; delay for LCD
 movlw .56
 call LCDWrite8 ; 8 bit interface 2 line, 5x7 character format
 movlw .5
 call Delay ; delay for LCD
 movlw .56
 call LCDWrite8 ; 8 bit interface 2 line, 5x7 character format
 movlw .5
 call Delay ; delay for LCD

 ; write user specific configuration data
 movlw H'6'
 call LCDWrite8 ; display shifting disabled, use cursor shifting instead
 movlw .5
 call Delay ; delay for LCD
 movlw H'1'
 call LCDWrite8 ; clear all DDRAM and set cursor to pos 1
 movlw .5
 call Delay ; delay for LCD
 movlw H'C'
 call LCDWrite8 ; display ON
 bsf PORTE,0 ; set to data register

 ; write data to the LCD "10321747"
 movlw H'31'
 call LCDWrite8
 movlw H'30'
 call LCDWrite8
 movlw H'33'
 call LCDWrite8
 movlw H'32'
 call LCDWrite8
 movlw H'31'
 call LCDWrite8

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 16 Beno Gorancic

 movlw H'37'
 call LCDWrite8
 movlw H'34'
 call LCDWrite8
 movlw H'37'
 call LCDWrite8

 ; move cursor to 1st position 2nd line of the LCD
 bcf PORTE,0 ; set instruction register
 movlw H'C0'
 call LCDWrite8
 bsf PORTE,0 ; set data register

 ; write data to the LCD "F="
 movlw 'F'
 call LCDWrite8
 movlw '='
 call LCDWrite8

 ; move cursor to 7th position 2nd line of the LCD
 bcf PORTE,0 ; set instruction register
 movlw H'C6'
 call LCDWrite8
 bsf PORTE,0 ; set data register

 ; write data to the LCD "A="
 movlw 'A'
 call LCDWrite8
 movlw '='
 call LCDWrite8

 return

;---
; Send_to_LCD - SENDS DATA TO THE LCD
;---
Send_to_LCD
 bcf PORTE,0 ; set instruction register
 movlw H'C2' ; move cursor to 3rd position 2nd line of the LCD
 call LCDWrite8

 movfw Frequency
 call Binary_to_BCD

 bsf PORTE,0 ; set data register
 movfw huns
 call LCDWrite8 ; send hundreds
 movfw tens
 call LCDWrite8 ; send tens
 movfw units
 call LCDWrite8 ; send units

 bcf PORTE,0 ; set instruction register
 movlw H'C8' ; move cursor to 9th position 2nd line of the LCD
 call LCDWrite8

 movfw Amplitude
 call Binary_to_BCD

 bsf PORTE,0 ; set data register
 movfw huns
 call LCDWrite8 ; send hundreds
 movfw tens
 call LCDWrite8 ; send tens
 movfw units
 call LCDWrite8 ; send units

 return

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 17 Beno Gorancic

;---
; LCDWrite8 - WRITE TO THE LCD IN 8 BIT MODE
;---
LCDWrite8
 movwf LCD_Temp_Buffer ; temporally store data to be written to the LCD
 bcf PORTE,2 ; clear the enable pin
 movlw .1
 call Delay ; 1ms delay for LCD timing
 movf LCD_Temp_Buffer,W
 movwf PORTD ; write stored data to PORTD ie LCD data pins
 bsf PORTE,2 ; pulse enable pin
 nop
 bcf PORTE,2
 return

;---
; Delay - DELAYS A SET AMOUNT OF ms; COUNTS CYCLES BASED ON 20MHZ CLOCK
;---
Delay
 movwf DelayA
OuterLoop
 movlw .29
 movwf DelayB
MiddleLoop
 movlw .42
 movwf DelayC
InnerLoop
 nop
 decfsz DelayC,F
 goto InnerLoop
 decfsz DelayB,F
 goto MiddleLoop
 decfsz DelayA,F
 goto OuterLoop
 return

;---
; Scale_Data - SCALES DOWN THE FREQUENCY AND AMPLITUDE; USED FOR HYPER TERMINAL
;---
Scale_Data
 movfw Frequency ; set value in W register to Frequency
 movwf Scaled_Frequency ; move value in W register to Scaled_Frequency
 movlw H'02'
 movwf Temp ; moves H'02' from W register to Temp

; changes the 8 bit frequency to 6 bit
Scale_Frequency
 rrf Scaled_Frequency ; right shift Scaled_Frequency
 bcf Scaled_Frequency,7 ; clear bit 7
 decfsz Temp ; decrements Temp and checks if 0...
 goto Scale_Frequency ; if it's 0 then skip goto

 movfw Amplitude ; set value in W register to Amplitude
 movwf Scaled_Amplitude ; move value in W register to Scaled_Amplitude
 movlw H'04'
 movwf Temp ; moves H'04' from W register to Temp

; changes the 8 bit amplitude to 4 bit
Scale_Amplitude
 rrf Scaled_Amplitude ; right shift Scaled_Amplitude
 bcf Scaled_Amplitude,7 ; clear bit 7
 decfsz Temp ; decrements Temp and checks if 0...
 goto Scale_Amplitude ; if it's 0 then skip goto

 return

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 18 Beno Gorancic

;---
; Startup_HyperTerminal - HYPER TERMINAL STARTUP ROUTINE
;---
Startup_HyperTerminal
 bcf STATUS,RP0
 bcf STATUS,RP1 ; select bank 0

 movlw H'41' ; moves ascii char to W reg; A
 call Send_Char
 movlw H'33' ; 3
 call Send_Char
 movlw H'20' ; space
 call Send_Char
 movlw H'32' ; 2
 call Send_Char
 movlw H'30' ; 0
 call Send_Char
 movlw H'30' ; 0
 call Send_Char
 movlw H'36' ; 6
 call Send_Char
 movlw H'0D' ; carriage return
 call Send_Char
 movlw H'0A' ; new line
 call Send_Char
 movlw H'48' ; H
 call Send_Char
 movlw H'28' ; (
 call Send_Char
 movlw H'73' ; s
 call Send_Char
 movlw H'29' ;)
 call Send_Char
 movlw H'0D' ; carriage return
 call Send_Char
 movlw H'0A' ; new line
 call Send_Char
 movlw H'5E' ; ^
 call Send_Char
 movlw H'0D' ; carriage return
 call Send_Char
 movlw H'0A' ; new line
 call Send_Char

 movlw D'16'
 movwf Axis_Temp_Value

; insert '|' 16 times
Vertical_Axis
 movlw H'7C' ; |
 call Send_Char
 movlw H'0D' ; carriage return
 call Send_Char
 movlw H'0A' ; new line
 call Send_Char
 decfsz Axis_Temp_Value ; decrement Axis_Temp_Value...
 goto Vertical_Axis ; skip goto if 0

 movlw D'65'
 movwf Axis_Temp_Value

; insert '-' 65 times
Horizontal_Axis
 movlw H'2D' ; -
 call Send_Char
 decfsz Axis_Temp_Value ; decrement Axis_Temp_Value...
 goto Horizontal_Axis ; skip goto if 0

 movlw H'3E' ; >
 call Send_Char

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 19 Beno Gorancic

 movlw H'20' ; space
 call Send_Char
 movlw H'66' ; f
 call Send_Char

 return

;---
; Send_Char - SENDS CHARACTER TO HYPER TERMINAL
;---
Send_Char
 movwf TXREG ; move value from W register to transmit register
 nop
Check
 btfss PIR1,TXIF ; checks if GO/DONE is set
 goto Check ; if not goto Check

 return

;---
; Send_to_HyperTerminal - SENDS DATA TO HYPER TERMINAL
;---
Send_to_HyperTerminal

; move cursor home (top-left corner of Hyper Terminal)
 movlw H'1B' ; moves ascii char to W reg; ESC
 call Send_Char
 movlw H'5B' ; [
 call Send_Char
 movlw H'48' ; H
 call Send_Char

; move cursor down
 movlw H'1B' ; ESC
 call Send_Char
 movlw H'5B' ; [
 call Send_Char
 movlw H'31' ; 1
 call Send_Char
 movlw H'38' ; 8
 call Send_Char
 movlw H'42' ; B
 call Send_Char

 movfw Old_Scaled_Frequency ; set value in W register to Old_Scaled_Frequency
 movwf Temp ; move value in W register to Temp
 movlw .1
 addwf Temp ; add value in W register to Temp

; move cursor forward
Move_Forward
 movlw H'1B' ; ESC
 call Send_Char
 movlw H'5B' ; [
 call Send_Char
 movlw H'43' ; C
 call Send_Char

 decfsz Temp ; decrement Temp...
 goto Move_Forward ; if it's 0 then skip goto

 movfw Old_Scaled_Amplitude
 movwf Temp
 movlw .1
 addwf Temp

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 20 Beno Gorancic

; erase current value
Erase_Value
 movlw ' ' ; ' '
 call Send_Char
 movlw H'08' ; backspace
 call Send_Char

; move cursor up
 movlw H'1B' ; ESC
 call Send_Char
 movlw H'5B' ; [
 call Send_Char
 movlw H'41' ; A
 call Send_Char

 decfsz Temp
 goto Erase_Value

; move cursor home
 movlw H'1B' ; moves ascii char to W reg; ESC
 call Send_Char
 movlw H'5B' ; [
 call Send_Char
 movlw H'48' ; H
 call Send_Char

; move cursor down
 movlw H'1B' ; ESC
 call Send_Char
 movlw H'5B' ; [
 call Send_Char
 movlw H'31' ; 1
 call Send_Char
 movlw H'38' ; 8
 call Send_Char
 movlw H'42' ; B
 call Send_Char

 movfw Scaled_Frequency
 movwf Temp
 movlw .1
 addwf Temp

; move cursor forward
Move_Forward_New
 movlw H'1B' ; ESC
 call Send_Char
 movlw H'5B' ; [
 call Send_Char
 movlw H'43' ; C
 call Send_Char
 decfsz Temp
 goto Move_Forward_New

 movfw Scaled_Amplitude
 movwf Temp
 movlw .1
 addwf Temp

; send '*' char
Add_Star
 movlw H'2A' ; *
 call Send_Char
 movlw H'08' ; backspace
 call Send_Char

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 21 Beno Gorancic

; move cursor up
Move_Up
 movlw H'1B' ; ESC
 call Send_Char
 movlw H'5B' ; [
 call Send_Char
 movlw H'41' ; A
 call Send_Char

 decfsz Temp
 goto Add_Star

 return

 END

Introductory Digital Systems 48441 Autumn Printed: 3/02/2007

© 2006 22 Beno Gorancic

References

ANSI Escape Sequence

http://adm.lacitec.on.ca/~ymicha/mcours/micro1/escape.html, last accessed 6/6/06

ASCII Table

http://www.lookuptables.com, last accessed 06/06/2006

Figure 1.0: LCD

“LCD Connections and Description” PDF file from UTS Online under subject: 48441

Figure 2.0: Binary to BCD (provided in Lecture PIC3)

“Lecture 10 Capture/Compare/PWM modules” 48441 – Introductory Digital Systems,

University of Technology, Sydney

Figure 3.0: Acquisition time

“Microchip PIC16F87X Data Sheet”, page 114

Figure 1.1: Display Data Ram Access Map

“LCD Connections and Description” from UTS Online under subject: 48441 -

Introductory Digital Systems

Table 1.0: LCD Connections

“LCD Connections and Description” from UTS Online under subject: 48441 –

Introductory Digital Systems

“LCD Connections and Description” PDF file from UTS Online made available to

students under the subject 48441 - Introductory Digital Systems

“TRULY LCD Module Product Specifications” PDF file

“Microchip PIC16F87X Data Sheet” PDF file

Most of the code used in the program has been adopted from code made available to

students on UTS Online under the subject 48441 - Introductory Digital Systems.

Some of the more extensively used assembly files:

 LCDExample.asm

 adconv.asm

 USART1.asm

Also some code has been adopted from code provided in the lecture notes.

